Friday, August 13, 2010

Solar Electric panels


Solar electric panels are high- efficiency, low maintenance ways to turn sunshine into usable electricity right at the location of the power demand.

Solar electric panels, or photovoltaic (PV) panels, are mounted in an unshaded area facing south, southeast, or southwest for use in a home or business that is already supplied with utility power or a home or cabin that is located a distance from power lines.

About the Grid Tie
Solar electric panels which are used in a system that already has utility power is called a ‘grid tie.’ These systems use no batteries but co-exist with the current utility grid, providing the best of both worlds. Solar panels that are used on a home or cabin that does not already have utility power is called an off- grid application. These systems use batteries to store power for night use and cloudy days, providing an independent, stand- alone system.
High Noon Offers Flexibility
High Noon Solar is highly experienced with solar electric design and installation of both types of applications, grid tie and off grid. Follow the links below to learn more about the solar electric system that best fits your situation and needs.

Solar energy systems in Pakistan


Many friends have enquired about availability of solar electric systems in Pakistan. I tried to contact many companies, claiming to have such systems including Siemens Pakistan, they did respond to my emails but failed to give any further information.

Today there is a news item from APP about the offer from Highnoon Group to electrify one village. I just found their website and have gathered some information from there, which is being posted here. I shall continue my search about solar systems and update visiting friends. I have decided to create a separate category about energy in order to gather all the information under one category because energy is the main issue these days in Pakistan; we have to explore new ways to have cheaper energy sources.

Monday, July 19, 2010

Green Hotels Use Solar Hot Water


More and more commercial operations are turning to renewable energy to green their practices to both save money and the environment. In fact, green hotels use solar hot water to significantly defray operating costs and energy usage.
We’ve written about solar hot water systems incorporated into breweries and dairies – both of which have high hot water demands. It shouldn’t be surprising that hotels and resorts that turn to solar hot water can really cut down on energy demands.
Consider that one of the largest components of hotel operating costs is hot water. Not only is it used by guests to take showers and shave, but significant amounts are demanded each and every day to wash towels and other linens, clean guest rooms and more.

Instead of relying on electricity, natural gas or oil, green hotels can now use solar hot water to maintain profit margins and avoid passing on energy cost increases to their guests. In fact, many properties can expect to save thousands of dollars each year as a result of installing solar hot water.
One company, SunMaxx, has a super solar hot water system for both residential and commercial use. In fact, they can help you develop a solar system to meet the needs of a hotel or resort, including pool and spa heating.
According to its website, a SunMaxx Solar Hot Water System can be used for:
Domestic Hot Water (laundry, cleaning, showers)
Solar Radiant Space Heating
In floor radiant heating
Baseboard radiant heating
Forced hot air heating
Solar Central Cooling / AC Systems
Solar Pool & Spa Heating
Snow / Ice Melting Applications
Sidewalks
Driveways
Parking Lots
Common Public Location

How do Solar Panels Work?


Whether on a solar-powered calculator or an international space station, solar panels generate electricity using the same principles of electronics as chemical batteries or standard electrical outlets. With solar panels, it's all about the free flow of electrons through a circuit.

To understand how solar panels generate electrical power, it might help to take a quick trip back to high school chemistry class. The basic element of solar panels is the same element that helped create the computer revolution -- pure silicon. When silicon is stripped of all impurities, it makes a ideal neutral platform for the transmission of electrons. Silicon also has some atomic-level properties which make it even more attractive for the creation of solar panels.

Silicon atoms have room for eight electrons in their outer bands, but only carry four in their natural state. This means there is room for four more electrons. If one silicon atom contacts another silicon atom, each receives the other atom's four electrons. This creates a strong bond, but there is no positive or negative charge because the eight electrons satisfy the atoms' needs. Silicon atoms can combine for years to result in a large piece of pure silicon. This material is used to form the plates of solar panels.

Here's where science enters the picture. Two plates of pure silicon would not generate electricity in solar panels, because they have no positive or negative charge. Solar panels are created by combining silicon with other elements that do have positive or negative charges.

Phosphorus, for example, has five electrons to offer to other atoms. If silicon and phosphorus are combined chemically, the result is a stable eight electrons with an additional free electron along for the ride. It can\'t leave, because it is bonded to the other phosphorus atoms, but it isn\'t needed by the silicon. Therefore, this new silicon/phosphorus plate is considered to be negatively charged.

In order for electricity to flow, a positive charge must also be created. This is achieved in solar panels by combining silicon with an element such as boron, which only has three electrons to offer. A silicon/boron plate still has one spot left for another electron. This means the plate has a positive charge. The two plates are sandwiched together in solar panels, with conductive wires running between them.

With the two plates in place, it's now time to bring in the 'solar' aspect of solar panels. Natural sunlight sends out many different particles of energy, but the one we're most interested in is called a photon. A photon essentially acts like a moving hammer. When the negative plates of solar cells are pointed at a proper angle to the sun, photons bombard the silicon/phosphorus atoms.

Eventually, the 9th electron, which wants to be free anyway, is knocked off the outer ring. This electron doesn't remain free for long, since the positive silicon/boron plate draws it into the open spot on its own outer band. As the sun's photons break off more electrons, electricity is generated. The electricity generated by one solar cell is not very impressive, but when all of the conductive wires draw the free electrons away from the plates, there is enough electricity to power low amperage motors or other electronics. Whatever electrons are not used or lost to the air are returned to the negative plate and the entire process begins again.

One of the main problems with using solar panels is the small amount of electricity they generate compared to their size. A calculator might only require a single solar cell, but a solar-powered car would require several thousand. If the angle of the solar panels is changed even slightly, the efficiency can drop 50 percent.

Some power from solar panels can be stored in chemical batteries, but there usually isn't much excess power in the first place. The same sunlight that provides photons also provides more destructive ultraviolet and infrared waves, which eventually cause the panels to degrade physically. The panels must also be exposed to destructive weather elements, which can also seriously affect efficiency.

Many sources also refer to solar panels as photovoltaic cells, which references the importance of light (photos) in the generation of electrical voltage. The challenge for future scientists will be to create more efficient solar panels are small enough for practical applications and powerful enough to create excess energy for times when sunlight is not available.

Tuesday, July 6, 2010

Solar energy changing lives in remote,backward Tharparkar region


Environment-friendly solar energy has changed the lives of several hundred households in Tharparkar, which remains one of the most backward regions of the country.

The Alternate Energy Development Board, Pakistan Poverty Alleviation Fund and Thardeep Rural Development Programme ñ a non-governmental organisation ñ have joined hands to launch the solar energy project in this arid region at a time when the country faces massive electricity shortage.

In a vast desert region like Tharparkar, where temperature hit a peak of 30-35 degrees Celsius even in winters and touches a high of over 50 degrees Celsius during summers, the scorching rays of sun are usually seen as a bane.

But for the first time, this immeasurable resource is being utilised like any other modern place of the world.

Solar energy is not just providing electricity to the mud-and-straw houses of remote villages, but also helps irrigate small patches of land.

“The electricity has changed our lives,” said Khanno, a 45-year-old farmer, who like most residents of this place uses only one name. “Electricity has extended our day. Now my children can study even after the sunset.”

The solar energy project, launched two years ago, has so far provided electricity to 16 villages at a cost of more than Rs100 million, including the villages of Kasbo, Rarko, Wadhanjowadhio and Oanjowadhio ñ all in Tharparkar district.

Riaz Rajar, an official of Thardeep Rural Development Programme, said that one panel costs around Rs700,000 to Rs800,000.

"We install at least eight such panels in a village, which is a one time investment," he said. "They generate enough electricity to illuminate 20 to 30 houses."

“Pakistan Poverty Alleviation Fund contributes 80 per cent of the funds and the remaining 20 per cent is raised by the local community,” Rajar said.

He said that electricity-run power pumps help pull water from 50 to 150 feet below the surface.

“Apart from drinking, this water is also used for irrigation through drip technique to save wastage and conserve this precious natural resource, which is scarce in this region.”

Scarcity of water in Tharparkar, bordering the Great Indian Desert, impacts the entire population, especially women, who had to walk miles to fetch two buckets of water from the wells.

But electric pumps have made their life easy.

Now solar energy is being used to pull water, which is stored in cement tanks.

Khanno, the farmer, said that thanks to electricity he now manages to cultivate onions and tomatoes on his two acres of once barren land.

According to SciDev, a London-based non-profit organisation, there is no shortage of solar energy across the world. Almost all the developing countries have enormous solar power potential, it said in a report.

Solar energy changing lives in remote,backward Tharparkar region

SOLAR TECHNOLOGY


The Solar Energy Technologies Program focuses on developing cost-effective solar energy technologies that have the greatest potential to benefit the nation and the world. A growing solar industry also stimulates our economy by creating jobs in solar manufacturing and installation.
Photovoltaics

The Photovoltaics subprogram aggressively funds a diverse set of PV technologies that have potential in many markets that will help solar electricity achieve grid parity.
Concentrating Solar Power

The Concentrating Solar Power subprogram is making CSP competitive in the intermediate power market and developing advanced technologies that will reduce system and storage costs through partnerships with solar companies and universities and national laboratories.
Systems Integration

The Systems Integration subprogram addresses the technical barriers to wide-scale deployment of solar technologies on the grid by funding solar companies to develop smarter technologies, supporting testing and demonstration at national laboratories and in the field, developing new codes and standards, and removing economic barriers.
Market Transformation

The Market Transformation subprogram works with cities, states, utilities, and other partners to address barriers to the widespread adoption of solar technologies and reduce the non-hardware costs associated with installation.

Photovoltaics


he U.S. Department of Energy works to provide clean, reliable, affordable solar electricity for the nation through its research programs in photovoltaic (PV) energy systems. The following pages explain the "how's" and "why's" of PV. Whether you are a student, builder, consumer, engineer, or researcher, there is something here for you.

Photovoltaic technology makes use of the abundant energy in the sun, and it has little impact on our environment. Photovoltaics can be used in a wide range of products, from small consumer items to large commercial solar electric systems.

Our goal is to ensure that photovoltaic energy systems make an important contribution to the energy needs of our nation and the world. In these pages, you will learn about DOE's R&D in photovoltaic energy systems.

Solar Energy and Personal Empowerment

 Harnessing the Sun: How Solar Energy Empowers Individuals and Communities Solar energy isn't just about powering homes; it's about ...