Wednesday, September 8, 2010

Building Your Own Solar Energy Panel

One reason why people often build their own panels is because it is much cheaper to do than to buy new solar panels. For beginners, there are a number of different ways it can be done and you’ll find most what you need at your local home improvement store. You can build a small one over the course of a weekend for about $200-$300. It will power a small shop or appliance. However, you can also loop these together to create more energy.

How Solar Energy Panels Work

Solar energy panels contain photovoltaic cells. This is where the energy from the sun is converted to electricity. While there’s quite a science behind it all, here are the basics. Silicon plates are used to allow electrons to flow freely through it. The silicon doesn’t have either a positive or a negative charge, so other elements, usually phosphorus, and boron are combined with the silicon, so the sun’s energy can be captured by the silicon. The photons from the sun bombard those silicon panels and this captured energy is converted into electricity that can be used to power household appliances, small shops, or even a entire home. Solar panels are looped together to create more energy. This is why you see many panels on the roof of a solar powered home.

Solar Panels for Beginners: What You Must Know

Solar power is quickly becoming one of the most popular forms of renewable sources of energy. It’s a fantastic way to conserve the earth’s natural resources, but also provides one of the cleanest, most effective forms of energy available today. For those that are not familiar with this type of energy, you need to get a little information on solar panels for beginners, so that you know the important aspects, terminology, and a little bit of the science behind it all.

School builds green future with solar panels

PUPILS took a green leap into the future when solar panels were installed at their school – thanks to a project launched by a parent.

Edward Feild School in Kidlington has installed 22 panels in time for the new school term.

The project, brainchild of parent Alan Asbury, will save the school £350 a year in fuel costs and teach youngsters about renewable energy.

Dad-of-two Mr Asbury raised the idea with staff and governors two years ago and then helped raise the £23,000 needed.

He said: “The new solar panels will hopefully raise awareness of the need for and obvious benefits of renewable energy.”

The panels will provide 3,500 kWh, roughly the annual electricity of an average household.

Pupils will be shown data explaining how much energy, cash and carbon has been saved.

School business manager Caroline Murray said: “Now the children can see the panels, they are very intrigued.

“They will be able to learn about them in their science lessons and the meter readings mean they can make graphs or monitor how the sun changes throughout the year.

“We’re very excited about the scope of this new equipment.”

The project was funded by the Government’s Department of Energy and Climate Change, and Barclaycard Pure.

Year Five pupil Fraser Day, nine, said: “It’s really cool to know that our idea has been put into action.

“We’re saving the school quite a lot of energy. We were going to have a wind turbine but we decided that it wouldn’t save as much money and they were too big.”

Erin Comess, also nine, said: “It’s really cool because we are saving energy and we can also sell the energy when we don’t need to use it.”

Headteacher Cathryne Wilkes said: “I’d like to thank Alan for his hard work and determination in seeing the project through to completion.”

Oxfordshire County Council is working with schools to cut CO2 emissions, currently about 36,000 tonnes a year.

Ian Hudspeth, cabinet member for growth and infrastructure, said: “This is a great example of the innovative ideas and hard work many of our schools are putting in to become more energy efficient and meet the environmental challenges of the future.”

IREC Announces Solar Licensing Database

In the database, licensing requirements for installing photovoltaic and solar thermal systems are documented for each state. These are organized alphabetically. Today, only 14 states have established specific solar license classifications, usually sub-classifications of electrical or plumbing licenses, and often specifically defined to limit the scope of work to direct solar installations and maintenance tasks. For additional information, resource links to state-specific websites and documents are included. IREC will update the database to keep pace with those changes as they become available.

“As licensing requirements emerge and change in individual states, IREC felt that it could contribute by providing this resource of existing requirements that can be used as a reference tool,” said IREC’s Director of Operations, Pat Fox.

“IREC is broadly recognized as a unique resource and conduit for change in the renewable energy arena. This database is just one of many IREC resources it offers free of charge to the public,” said Fox.

The Interstate Renewable Energy Council (IREC) is a non-profit organization accelerating the use of renewable energy since 1982. IREC' s programs and policies lead to easier, more affordable connection to the utility grid; fair credit for renewable energy produced; best practices for states, municipalities, utilities and industry; and quality assessment for the growing green workforce through the credentialing of trainers and training programs.

First Solar Powered Car


Think back in time before automobiles came into the picture, one notable fact that you would observe would be the total lack of pollution, noise pollution, unhealthy emissions from the cars and no gasoline. It’s not that people didn’t travel, they did – but what they used was horsepower.
Now let’s think into the future, some basic similarities again, automobiles are in the picture but without the pollution, noise pollution etc. And again no gasoline! You would wonder how that is possible: Cars but no Gasoline? What would they run on? Well how about sunlight!
Solar power is something that is going to come up in a big way. There are many research projects about harnessing the sun’s energy and utilizing it for the betterment of mankind. So there might just be a future where transportation would not require any gasoline, it would be low cost and environmental friendly.
Work is already in progress to make this dream a reality. A team of fourth-year engineering students along with their professor, in Beruit, has been successful in building the first solar-powered vehicle in the Arab region. The American University of Beirut issued a statement in this regard. The vehicle has been aptly named Apollo’s Chariot. Apollo being the Greek God of the Sun as mentioned in mythology. This solar-powered vehicle is made entirely of steel and fiberglass and measures five-and-a-half meters in length and two meters in width. It’s a single seater and weighs about 700 kilograms, almost half the weight of an average sedan.
The Team of Elie Maalouf, Amin Kanafani, Ahamed Hammoud and Rawad al-Jurdi under the guidance of Mechanical Engineering Assistant Professor Daniel Asmar worked unceasingly for nine months to give shape to the “Chariot”.
This futuristic-looking vehicle with an aerodynamic design smoothly glides over the road with a total lack of noise and pollution. Eli Maalouf demonstrated the workings of the “Chariot” on Campus and impressed everyone with its effortless maneuvering. “Apollo’s Chariot “during the demo, moved forward, backward, along a curb and then up a small hill without any hitch.
Professor Daniel Amin in praise of this creation said that, “It looks like a rocket but moves like a swan,” “We actually built a car that runs on a new kind of energy. It’s almost like magic!”
Ellie said that the longest trip that he has ever made with the Chariot till now was, 50 meters and that he hopes that ” in the near future, I will be able to drive an improved version of this car, everyday ““ to university, to work, to go out with my friends.”
Professor Asmar purports that these solar-powered vehicles are important for research purposes for the time being and are yet still years from becoming available commercially. It would cost around a million dollars at present to build one that could be safely driven on streets.
“I’m ecstatic,” said Asmar. “This is a dream come true for me that would not have been “possible without our sponsors.”
To build Apollo’s Chariot a sum of $ 25,000, was raised through several local and foreign sponsors like Power Tech, a Lebanese co., Voluntariato Internazionale per lo Sviluppo (VIS), A volunteer Italian association for development, Italian Cooperation, Byblos Bank, Bank of Beirut and Arab Countries (BAAC), Bridgestone tires and the AUB Department of Mechanical Engineering to name a few.
The car converts solar energy into 1000 watts of power with the help of 36 small and 8 large photovoltaic cells. The car includes components like cells and batteries, for capturing and storing solar energy, and a DC (direct current) motor for converting energy from the batteries into a uniform source of energy. A maximum power point tracker device is also used to maximize the amount of power delivered from the cells.
A 3,000- kilometer race by solar electric cars is held in Australia with the purpose of promoting research on solar energy. It is known as The World Solar Challenge and was launched in 1987. The next race is to be held in 2009. The team aims to keep on improving Apollo’s Chariot so that they are able to represent Lebanon and AUB at the Next World Solar Challenge

How to build the solar cell

The first step is to cut a piece of the copper sheeting that is about the size of the burner on the stove. Wash your hands so they don't have any grease or oil on them. Then wash the copper sheet with soap or cleanser to get any oil or grease off of it. Use the sandpaper or wire brush to thoroughly clean the copper sheeting, so that any sulphide or other light corrosion is removed.

Next, place the cleaned and dried copper sheet on the burner and turn the burner to its highest setting.

As the copper starts to heat up, you will see beautiful oxidation patterns begin to form. Oranges, purples, and reds will cover the copper.

As the copper gets hotter, the colors are replaced with a black coating of cupric oxide. This is not the oxide we want, but it will flake off later, showing the reds, oranges, pinks, and purples of the cuprous oxide layer underneath.

The last bits of color disappear as the burner starts to glow red.

When the burner is glowing red-hot, the sheet of copper will be coated with a black cupric oxide coat. Let it cook for a half an hour, so the black coating will be thick. This is important, since a thick coating will flake off nicely, while a thin coat will stay stuck to the copper.

Solar Energy and Personal Empowerment

 Harnessing the Sun: How Solar Energy Empowers Individuals and Communities Solar energy isn't just about powering homes; it's about ...